
5 Application: Higher-order rematerialization

Now that we have a generalized environment analysis, we can precisely state
the condition under which higher-order rematerialization is safe. Might’s work
on the correctness of super-β inlining formally defined safe to mean that the
transformed program and the untransformed program maintain a bisimulation
in their concrete executions [16].

Theorem 4. It is safe to rematerialize the expression e� in place of the expres-
sion e in the call site call iff for every reachable compound abstract state of
the form ((call , β̂��, �ve, t̂),≡), it is the case that Ê(e�, β̂��, �ve) = (lam �, β̂�) and
Ê(e, β̂��, �ve) = (lam, β̂) and the relation σ ⊆ Var×Var is a substitution that uni-
fies the free variables of lam � with lam and for each (v�, v) ∈ σ, β̂�(v�) ≡ β̂(v).

Proof. The proof of bisimulation has a structure identical to that of the proof
correctness for super-β inlining in [16].

6 Related work

Clearly, this work draws on the Cousots’ abstract interpretation [5, 6]. Binding
invariants succeed the Cousots’ work as a relational abstraction of higher-order
programs [7, 8], with the distinction that binding invariants range over abstract
bindings instead of formal parameters. Binding invariants were also inspired by
Gulwani et al.’s quantified abstract domains [9]; there is an implicit universal
quantification ranging over concrete constituents in the definition of the abstrac-
tion map αη

≡. This work also falls within and retains the advantages of Schmidt’s
small-step abstract interpretive framework [24]. As a generalization of control-
flow analysis, the platform of Section 2 is a small-step reformulation of Shivers’s
denotational CFA [27], which itself was a extension of Jones’s original CFA [13].
Like the Nielsons’ unifying work on CFA [22], this work is an implicit argument
in favor of the inherent flexibility of abstract interpretation for the static analy-
sis of higher-order programs. In contrast with constraint-based, type-based and
model-checking CFAs, small-step abstract interpretive CFAs are easy to extend
via direct products and parameterization.

From shape analysis, anodized bindings draw on singleton abstraction while
binding invariants are inspired by both predicate-based abstractions [3] and
three-valued logic analysis [23]. Chase et. al had early work on counting-based
singleton abstractions [4], while Hudak’s work on analysis of first-order functional
programs employed a precursor to counting-based singleton abstraction [10]. An-
odization, using factored sets of singleton and non-singleton bindings, is most
closely related to the Balakrishnan and Reps’s recency abstraction [2], except
that anodization works on bindings instead of addresses, and anodization is not
restricted to a most-recent allocation policy. Superficially, one might also term
Jones and Bohr’s work on termination analysis of the untyped λ-calculus via
size-change as another kind of shape analysis for higher-order programs [14].


