
bindings in the set B̂:

ĝ−1
B̂

(b̂) =

�
b̂� b̂ ∈ B̂ and b̂ = ĝ(b̂�)
b̂ otherwise

ĝ−1
B̂

�
d̂1, . . . , d̂n

�
=

�
ĝ−1

B̂
(d̂1), . . . , ĝ−1

B̂
(d̂n)

�

ĝ−1
B̂

(lam, β̂) = (lam, ĝ−1
B̂

(β̂))

ĝ−1
B̂

(β̂) = λv.ĝ−1
B̂

(β̂(v))

ĝ−1
B̂

(�ve) = λb̂.ĝ−1
B̂

(�ve(b̂)).

Because the concrete semantics obey the uniqueness constraint (Equation 1),
the abstract interpretation may treat the set �Bind1 as a set of singleton abstrac-
tions for the purpose of testing binding equality.

3.1 Solving the environment problem with anodization

Given two abstract environments β̂1 and β̂2, it is easy to determine whether the
concrete constituents of these environments agree on the value of some subset
of their domains, {v1, . . . , vn}:

Theorem 2. If αη(β1) = β̂1 and αη(β2) = β̂2, and β̂1(v) = β̂2(v) and β̂1(v) ∈
�Bind1, then β1(v) = β2(v).

Proof. By the abstraction-uniqueness constraint.

3.2 Implementing anodization efficiently

The näıve implementation of the abstract transition rule is inefficient: the de-
anodizing function ĝ−1

B̂
must walk the abstract value environment with every

transition. Even in 0CFA, this walk adds a quadratic penalty to every transition.
To avoid this walk, the analysis should use serial numbers on bindings “under
the hood,” so that:

�Bind ≈ �Bind∞ × N.

That is, the value environment should be implemented as two maps:

�VEnv ≈ (�Bind∞ → N → D̂)× (�Bind∞ → N).

Given a split value environment �ve = (f̂ , ĥ), a binding (b̂, n) is anodized only if
n = ĥ(b̂), and it is not anodized if n < ĥ(b̂). Thus, when the allocator chooses to
anodize a binding, it does need to walk the value environment with the function
ĝ−1

B̂
to strip away existing anodization; it merely needs to increment the serial

number associated with that binding.

