
The constraints of a straightforward soundness theorem (Theorem 1) lead to
an abstract transition relation over this space:

(([[(f e1 . . . en)
�]], β̂, �ve, t̂),≡) ❀ ((call , β̂��, �ve �, t̂�),≡�), where:

d̂i = Ê(ei, β̂, �ve)

d̂0 � ([[(λ��
(v1 . . . vn) call)]], β̂�)

t̂� = �tick(call , t̂)

b̂i = �alloc(vi, t̂
�)

B̂ =
�

b̂i : b̂i ∈ �Bind1

�

β̂�� = (ĝ−1
B̂

β̂�)[vi �→ b̂i]

�ve � = (ĝ−1
B̂

�ve) � [b̂i �→ (ĝ−1
B̂

d̂i)],

and singleton bindings are reflexively equivalent:

b̂ ∈ �Bind1

b̂ ≡� b̂,

and bindings between singletons are trivially equivalent:

β̂(ei) ∈ �Bind1 b̂i ∈ �Bind1

β̂(ei) ≡� b̂i,

and untouched bindings retain their equivalence:

b̂ ≡ b̂� b̂ �∈ B̂ b̂� �∈ B̂

b̂ ≡� b̂�,

and bindings re-bound to themselves also retain their equivalence:

β̂(ei) ≡ b̂i

β̂(ei) ≡� b̂i.

4.1 Solving the generalized environment problem

Under the direct product abstraction, the generalized environment theorem,
which rules on the equality of individual bindings, follows naturally:

Theorem 3. Given a compound abstract state ((call , β̂, �ve, t̂),≡) and two ab-
stract bindings, b̂ and b̂�, if α̇η(call , β, ve, t) � ((call , β̂, �ve, t̂),≡) and η(b) = b̂
and η(b�) = b̂� and b̂ ≡ b̂�, then ve(b) = ve(b�).

Proof. By the structure of the direct product abstraction α̇η.


