The constraints of a straightforward soundness theorem (Theorem 1) lead to
an abstract transition relation over this space:
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and bindings between singletons are trivially equivalent:
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and untouched bindings retain their equivalence:
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and bindings re-bound to themselves also retain their equivalence:
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4.1 Solving the generalized environment problem

Under the direct product abstraction, the generalized environment theorem,
which rules on the equality of individual bindings, follows naturally:

Theorem 3. Given a compound abstract state ((call,B, vAe,tA)7E) and two ab-
stract bindings, b and V', if an(call, 3,ve,t) T ((call, 3, ve,t),=) and n(b) = b
and n(b') = and b =V, then ve(b) = ve(l').

Proof. By the structure of the direct product abstraction a”.



