
CFA Limitation: Super-β inlining Inlining a function based on flow infor-
mation is blocked by the lack of environmental precision in control-flow analysis.
Shivers termed the inlining of a function based on flow information super-β in-
lining [27], because it is beyond the reach of ordinary β-reduction. Consider:

(let ((f (lambda (x h)
(if x

(h)
(lambda () x)))))

(f #t (f #f nil)))

Nearly any CFA will find that at the call site (h), the only procedure ever
invoked is a closure over the lambda term (lambda () x). The lambda term’s
only free variable, x, is in scope at the invocation site. It feels safe to inline.
Yet, if the compiler replaces the reference to h with the lambda term (lambda
() x), the meaning of the program will change from #f to #t. This happens
because the closure that gets invoked was closed over an earlier binding of x (to
#f), whereas the inlined lambda term closes over the binding of x currently in
scope (which is to #t). Programs like this mean that functional compilers must
be conservative when they inline based on information obtained from a CFA. If
the inlined lambda term has a free variable, the inlining could be unsafe.

Specific problem To determine the safety of inlining the lambda term lam at the
call site [[(f . . . )]], we need to know that for every environment ρ in which this
call is evaluated, that ρ[[f]] = (lam, ρ�) and ρ(v) = ρ�(v) for each free variable v
in the term lam.2

CFA Limitation: Globalization Sestoft identified globalization as a second
blindspot of control-flow analysis [25]. Globalization is an optimization that con-
verts a procedure parameter into a global variable when it is safe to do so. Though
not obvious, globalization can also be cast as a problem of reasoning about en-
vironments: if, for every state of execution, all reachable environments which
contain a variable are equivalent for that variable, then it is safe to turn that
variable into a global.

Specific problem To determine the safety of globalizing the variable v, we need to
know that for each reachable state, for any two environments ρ and ρ� reachable
inside that state, it must be that ρ(v) = ρ�(v) if v ∈ dom(ρ) and v ∈ dom(ρ�).

CFA Limitation: Rematerialization Compilers for imperative languages
have found that it can be beneficial to rematerialize (to recompute) a value
at its point of use if the values on which it depends are still available. On mod-
ern hardware, rematerialization can decrease register pressure and improve cache
performance. Functional languages currently lack analyses to drive rematerial-
ization. Consider a trivial example:
2 The symbol ρ denotes a conventional variable-to-value environment map.


