1.3 Insight: Environments as data structures; bindings as addresses

Under the hood, environments are dynamically allocated data structures that de-
termine the value of a A-term’s free variables, and as a consequence, the mean-
ing of the function represented by a closure. When we adapt and extend the
principles of shape analysis (specifically, singleton abstractions [2,4] and shape
predicates [23]) to these environments, we can reason about the meaning of and
relationships between higher-order functions. As we adapt, we find that, in a
higher-order control-flow analysis, bindings are the proper analog of addresses.
More importantly, we will be able to solve the aforementioned problems beyond
the reach of traditional CFA.

1.4 Contributions

We define the generalized environment problem. We define higher-order rema-
terialization as a novel client of the generalized environment problem, and we
note that super-g inlining and globalization—both known to be beyond the reach
CFA—are also clients of the generalized environment problem. We find the philo-
sophical analog of shape analysis for higher-order programs; specifically, we find
that we can view binding environments as data structures, bindings as addresses
and value environments as heaps. Under this correspondence, we discover an-
odization, a means for achieving both singleton abstraction and focusing; and
we discover binding invariants as an analog of shape predicates. We use this
analysis to solve the generalized environment problem.

2 Platform: Small-step semantics, concrete and abstract

For our investigation into higher-order shape analysis, our platform is a small-
step framework for the multi-argument continuation-passing-style A-calculus:

f,e € Exp = Var + Lam v € Var == id"
f € Lab is a set of labels lam € Lam ::= (AY (vy...v,) call)
call € Call := (fer...en)’.

2.1 State-spaces

The concrete state-space (X in Figure 1) for the small-step machine has four
components: (1) a call site call, (2) a binding environment 3 to determine the
bindings of free variables, (3) a value environment ve to determine the value of
bindings, and (4) a time-stamp ¢ to encode the current context/history.

The abstract state-space (EA in Figure 1) parallels the structure of the con-
crete state-spaces. For these domains, we assume the natural partial orders; for
example, ve LI 5&’ = \b.7e(b) U 7e’ (b).

Binding environments (BEnv), as a component of both machine states and
closures, are the environments to which the environment problem refers. In our



