A posteriori soundness
for nondeterministic
abstract interpretations

Matthew Might (University of Utah)

Panagiotis Manolios (Northeastern University)



. QUESHIONS YQU. ARt
‘want atyeur«defense

® “So, why did the Cousots do it that way?”



Nondeterministic
Abstract Interpretation

® Where did it come from!?

® Frustration with the standard recipe.
® How do you prove it sound?

® A posteriori proof technique.
® Why would you want to use it?

® Better speed, better precision.



Outline

® Review standard recipe.
® Find annoyances.

® Get rid of them.



Thee/SPastiarariRRedgme
Define concrete state-space: L
Define concrete semantics: f: L — L
Define abstract state-space: L
Define abstractioenmanpicse f L > Lol
Befineahbuist seamariaes do:dbramli’ —
Prove fsimulates funder o

/\/ .
Prove /' simulates f under « .



lllustrating the
Standard Recipe



Malloc: The Language

labv::= malloc()



Concrete Semantics

State = Instruction x Store

F({§y =<'mallocQ] : 4,0) = (1, 0[v — a'])

a’ = alloc(s) = max(range(o)) + 1



Abstract Semantics

e~ e~

State = Instruction x Store

f([v := mallocQ]:4,6) = (i,6[v — a))

—_—

a = alloc(<) (from some finite set)



What to allocate?

® Abstract addresses = Scarce resource
® Avoid over-allocation: Good for speed

® Avoid under-allocation: Good for precision



Example: Over-allocation

>

a2




Example: Under-allocation




Allocation heuristics

Observation: Objects from like contexts act alike.

Example: m:([[lab . ] 4,2) = lab



Annoyance: Soundness

als) E¢

then

@ adar (allOF(s)) T AlOF (<)



The Issue
alloc(_, 0) = max(range(o)) + 1
alloc([lab : ...] :7,.) = lab

What abstraction map will work here?



Example

A x:
B :vy:

malloc()
malloc()

o=[x=1y—=2]

oadar = [12A, 2 B]



Standard Solution

ChangeAHdhubiitiedd
alloc([lalloc(.] o )=nlmmexfmgede(h 1) H- 1, lab)
a(_, lab) = lab

sebnantics!



Another problem:
Heuristics sometimes
make stupid decisions

Why not adapt on the fly!?



Example: Greedy Strategy

Heuristic says, “Allocate a1, and bind 4.

O

Adaptive allocator says,“Try 7(a1) first.”



Example: Greedy Strategy

Heuristic says, “Allocate a2, and bind 3.

a1 > 3

a2

Adaptive allocator says, “Just use a;.”



Dynamic Optimization

Given m abstract addresses,
how should they be allocated
to maximize precision!?



So, why not!

Can’t within confines of standard recipe.

(Counter-example in paper.)



® Factor aMﬁikiﬁl fif:ngeﬂcs

® Make allocation nondeterministic.

® Prove nondeterministic allocation sound.



Locative = Address

(But also times, bindings, contours, etc.)



Factoring out allocation



f : State — State

O )




F' : State — Loc — State

(O




A —_— —

f : State — 9State




—_—

. State . 2f0\c—>5/tcﬁ




. shQndeterministic
Abstracedntenpretation

® A posteriori soundness condition.



Transition Graphs

® Nodes = States

® Edge =Transition labeled by chosen locative



Sealed Graphs

Graph is sealed under factored semantics iff
every state has an edge to cover every transition.



Example: Unsealed Graph







Proving Sealed
Graphs Sound



Factoring Abstraction

o : State — S/tcge

B : (Loc — fo\c) — (State — STS(E?)



Dependent Simulation

¢ /
S S

B(OéLoc> ﬁ(OéLOC[f — é])
& s v



A Posteriori Theorem

Dependent simulation — Abstraction always exists



Proof Highlights

® Reduces to existence of locative abstractor.

® Construct abstractor as limit of sequence:

_ 13 )
QLoc = lim af .
1— N



More in the paper

® Nondeterministic CFA: 3CFA.

® More on greedy adaptive allocation.

® Discussion of global precision sensitivity.



Ongoing Work

® Empirical trials: 1.5x - 3x space, time savings
® Genetic algorithms

® Probabilistic allocation



So...

® Stop changing concrete semantics.
® Look beyond context for allocation.

® Don’t allocate context if bad for precision.



Thanks, y’all



